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Abstract—Polarimetric SAR image classification remains an 
important research area. Various methods continue to be 
developed for specific applications. High-resolution polarimetric 
SAR systems and advances in computational and data storage 
capabilities have revived interest in novel polarimetric analysis 
techniques. Accordingly, subaperture analysis of polarimetric 
SAR data has received renewed attention. A central assumption 
of SAR image formation is that individual radar scatterers are 
stationary; they have no structure and provide a constant 
reflectivity during the imaging process. However, with increased 
resolution, and hence fewer scatterers per pixel, the 
nonstationary response from any given scatterer is more likely to 
influence total radar backscatter of a pixel. We present a method 
to assess the polarimetric variability across the full aperture.  

Keywords - classification; subaperture analysis; polarimetric 
SAR.. 

I.  INTRODUCTION 
Polarimetric SAR image classification is an important area 

of research. Many geophysical applications of polarimetric 
SAR imagery are being explored in a variety of venues. The 
goal is to exploit the SAR information in a manner most useful 
for these applications. Developing new and/or better methods 
for extracting relevant information from polarimetric SAR 
datasets remains a critical step in all SAR analysis. Better, or 
more appropriate, classification techniques improve 
geophysical parameter estimation, and more generally promote 
the use of polarimetric SAR data to a wider audience.   

With the increased resolution, the nonstationary nature of the 
polarimetric response becomes readily apparent and a realistic 
assessment of the nonstationary behavior is possible [1,2]. We 
focus on azimuth subaperture analysis, employing the 
subaperture polarimetric image frames as a multiple image 
dataset for scene classification and analysis. 

 Two primary sources of nonstationary radar response are 
temporal variations and view-angle variation (non-spherical 
scattering characteristics) of the radar backscatter. Temporal 
variations typically arise from scatterer motion within the 
scene. Uniform, correlated motion in range of a large number 
of scatterers results in the classic “train-off-the-tracks” 
phenomena. Non-uniform and/or azimuth motion of scatterers 
blurs the full-aperture image and tends to reduce the frame-to-
frame correlations between the images formed by azimuth 
subaperture processing.  

View-angle dependencies typically signify manmade radar 
scatterers and often permit a more robust classification of the 

scene. One simple type of view-angle variation is broadside 
flash, e.g. the side of a building displays a stronger backscatter 
at a particular viewing angle. The dominant signal variation is 
the amplitude of the radar backscatter. In contrast, parallel 
furrows in plowed fields often show a variation of the 
scattering mechanism as a function of view-angle. Now the 
correlations between polarizations vary (not just the 
amplitudes) [1,3]. Differentiating between polarimetric changes 
and intensity changes is important for classification.  

The cross-correlations amongst the various polarimetric 
subaperture channels provide additional information for image 
classification. Therefore, we propose to exploit this information 
by analyzing the frame-to-frame correlations between the 
polarimetric covariance matrices derived from each of the 
subaperture frames.  

II. SUBAPERTURE POLARIMETRIC CORRELATIONS 
A number of methods are available to analyze polarimetric 

covariance matrices. Applying these methods directly to sets of 
polarimetric subaperture frames provides standard brute force 
approach to subaperture polarimetric analysis. However, these 
brute force methods tend to obscure the frame-to-frame 
correlations. Those correlations still exist they are just not so 
simply displayed.  

For concreteness, we assume in the following that the 
azimuth polarimetric subaperture processing provides a set of 
five frames. A 3×3 Hermitian covariance matrix defines the 
polarimetric radar signature of each pixel in each of the 
subaperture frames. We choose the circular basis for a simpler 
description of the polarimetry, in principle any basis may be 
employed, e.g. linear or Pauli. The precise details of the 
azimuth subaperture processing are not important for the 
following analysis and are not discussed in any detail. 

The standard brute force approach is to generate a complex 
15×15 Hermitian covariance matrix from the five 3×3 
covariance matrices, one from each of the subaperture frames. 
Generalizing classification techniques that apply to 
polarimetric covariance matrices to this new 15×15 covariance 
matrix is straightforward, but not always helpful. As mentioned 
above the polarimetric correlations between subaperture frames 
are not transparent and the polarimetric variation across the full 
aperture is difficult to describe. Here we develop methods that 
highlight the cross-frame correlations and simplify description 
of polarimetric variations. 

Given a set of five identical subaperture frames the frame-to-
frame correlations are highlighted by removing the polarimetric 
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content from the center frame. Let C0 denote the 3×3 
covariance matrix of center frame. Then eigen decompositions 
of both C0 and C0

-1 provide the needed simplification. 
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 where the λ’s are the eigenvalues and the w’s are the 
corresponding eigenvectors. The inverse, C0

-1, is similarly 
given by replacing each λ by λ-1. The main point is that C0 may 
be post-multiplied by 
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multiplied by the Hermitian conjugate to produce the identity 
matrix. Forming a 15×15 block diagonal matrix where each of 
the blocks is the above 3×3 complex matrix allows analysis of 
the complete set of subaperture frames. Post- and pre-
multiplying by the block diagonal matrix and its Hermitian 
conjugate reduces the 15×15 polarimetric subaperture 
covariance matrix to the following matrix 
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 that displays the obvious 
cross-frame correlations. This reduced matrix has only three 
nonzero eigenvalues. The degeneracy of the remaining twelve 
eigenvalues highlights the strong correlation between 
subaperture frames in this example. 

This simple example applies (approximately) to the case 
where the radar scattering is in fact stationary across the full 
azimuth aperture. Correlations between subaperture frames are 
obvious strong. And the analysis is simplified because the 
“polarimetry” is removed by the pre- and post-multiplications.    

III. NONSTATIONARY SCATTERING  
Non-identical subaperture frames arise either from 

differences among the eigenvalues, λ’s, or changes in the 
polarimetric scattering mechanisms, i.e. the w’s. Differences 
among the eigenvalues change the strength of the scattering but 
not the polarizations of the scattering mechanisms. In this case, 
the 15×15 matrix of 1’s explicitly shown above, is modified by 
the ratios of the individual frame eigenvalues with respect the 
eigenvalues of the center frame. Hence, the 1’s may change to 
other values, but all zeros remain zero. The polarimetric 
scattering mechanisms are constant across the full aperture, 

only their strengths vary. Now the eigen decomposition of this 
reduced matrix may have fifteen non-degenerate eigenvalues. 
Note that for this eigenvalue analysis, we have assumed that 
both the center 3×3 and the total 15×15 covariance matrices are 
not single-look covariance matrices; they have been either 
filtered or averaged.  

Tracking the changes of the scattering mechanisms is a bit 
more complicated. Now we need to parameterize the 
eigenvectors in a meaningful manner. The standard Cloude-
Pottier eigenvector parameterization characterizes the average 
scattering mechanism. In that role, the Pottier-Cloude 
parameterization works very well. The average scattering 
mechanism, α , and orientation angle, β , are easily 
determined. However, we need a different parameterization, 
one that characterizes the dominant scattering mechanism, the 
mechanism associated with the largest eigenvalue, λ1. Similar 
to the Pottier-Cloude decomposition, we want to maintain the 
strong connection between the eigenvector parameters and 
physical scattering process. Such decomposition has been 
proposed [4]. A set of rotations and phase adjustments define 
the eigenvectors expressed in the circular basis. The general 
form is given below,  

As before, the w’s are the eigenvectors. The first four 
parameters, α, β, τ and γ, define the scattering mechanism, 
orientation angle, helicity and a phase offset of the dominant 
eigenvector, w1. These “rotations” rotate w1 to [0,1,0], in the 
circular basis [LL, RL, RR]. The two remaining parameters, µ 
and ν, rotate w2 and w3 to [1, 0, 0] and [0, 0, 1], respectively. 
Unlike the Cloude-Pottier eigenvector decomposition, these 
parameters are all independent. In the low entropy limit the 
average scattering mechanism reduces to the dominant 
scattering mechanism and the four parameters characterizing 
w1 are the same for both decompositions, modulo a change of 
basis. These parameters are all well defined, and meaningful, in 
the low entropy limit, i.e. λ1 » λ2 » λ3 .      

 Ignore the eigenvalues for the time being, the 15×15 
reduced covariance matrix describes the set of rotations that 
rotate the eigenvectors [ ]3,2,1, iii www  into [ ]3,02,01,0 www  for 
all i. These rotation matrices are defined by 
[ ] [ ]3,02,01,0

†

3,2,1, wwwwww iii
, for the off-diagonal 3×3 

blocks and the product of this matrix with its Hermitian 
conjugate for 3×3 blocks along the diagonal.  
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How does this help? The product of the eigenvectors is 
written in terms of the parameterization in [4] and then the 
individual terms are easily compared. If the variation of the 
scattering mechanism varies across the full aperture then one 
immediately reads-off whether, say, the helicity or orientation 
angle, etc., has changed and by how much. Similarly, if the 
scattering mechanism is stationary then the intensity variations 
are read-off.  

Combining both eigenvalues and eigenvectors the frame-to-
frame rotation matrices become 
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and the diagonal blocks of the block diagonal reduced 
covariance matrix are the product of this matrix with its 
Hermitian conjugate. One concern with this formulation is to 
ensure that the product of eigenvector matrices is diagonally 
dominant. If not, then a straightforward row or column 
exchange will make it so. While this correction is not needed 
mathematically, it does permit easier frame-to-frame 
comparisons. 

IV. POLARIMETRIC SUBAPERTURE CLASSIFICATION 
The entire paper has dealt with a rewriting of the 15×15 

polarimetric subaperture covariance matrix. A primary reason 
for this rewriting of the polarimetric subaperture covariance 
matrix is to simplify the explanation of classification results, 
i.e. why are these two areas different? What has changed? 
However, these transformations of the covariance matrix do not 
destroy the under lying Wishart probability distribution. 
Therefore, our standard Wishart based classification algorithms 
still apply, but now in a higher dimension. The individual 
classes found will represent the average scattering 
characteristics as well as the variations of those observables 
across the full aperture. The advantage of applying a Wishart 
classifier at this stage is that one now knows how to interpret 
the non-stationary results. One can easily determine the 
variable quantities. 

We have generalized the Wishart classifier to handle 15×15 
covariance matrices, and will apply the classifier to EMISAR 
and ESAR polarimetric SAR data. A set of typical scenes will 
be presented that best highlight the strengths (and weaknesses) 
of the theoretical analysis presented above. The data displays a 
range of crop/ground cover types, forests, ocean surface, 
moving boats and buoys, radio interference, etc. 

V. DISCUSSION 
 Modern high-resolution polarimetric SAR systems and 

advances in computational and data storage capabilities have 

revived interest in novel polarimetric analysis techniques. 
Accordingly, subaperture analysis of polarimetric SAR data 
has received renewed attention. A central assumption of SAR 
image formation is that individual radar scatterers are 
stationary; they have no structure and provide a constant 
reflectivity during the imaging process. However, new 
polarimetric SAR systems have much improved resolution 
which a permits realistic assessment of nonstationary behavior. 

 Additionally, with the increased resolution the nonstationary 
response from any given scatterer is more likely to influence 
total radar backscatter of a pixel. Thus with high-resolution 
SAR systems, nonstationarity becomes more apparent. Here we 
have focused on azimuth subaperture analysis, employing the 
subaperture polarimetric images as a multiple image dataset for 
scene classification. 

The cross-correlations amongst the various polarimetric 
subaperture channels provide additional information for image 
classification. We exploit this subaperture information by 
analyzing the frame-to-frame correlations between the 
polarimetric covariance matrices derived from each subaperture 
frame.   

In the development given above the center frame was used 
exclusively as a reference against which the other subaperture 
covariances were compared. There is no inherent reason to use 
the center frame it this manner. Another reasonable approach 
would be to use the average covariance, averaged across all 
subapertures, as the reference against which to compare the 
individual subaperture covariance matrices. 
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